
F L O W  I N  P I P E S

F
luid flow in circular and noncircular pipes is commonly encountered in

practice. The hot and cold water that we use in our homes is pumped

through pipes. Water in a city is distributed by extensive piping net-

works. Oil and natural gas are transported hundreds of miles by large

pipelines. Blood is carried throughout our bodies by arteries and veins. The

cooling water in an engine is transported by hoses to the pipes in the radia-

tor where it is cooled as it flows. Thermal energy in a hydronic space heat-

ing system is transferred to the circulating water in the boiler, and then it is

transported to the desired locations through pipes.

Fluid flow is classified as external and internal, depending on whether the

fluid is forced to flow over a surface or in a conduit. Internal and external

flows exhibit very different characteristics. In this chapter we consider inter-

nal flow where the conduit is completely filled with the fluid, and flow is

driven primarily by a pressure difference. This should not be confused with

open-channel flow where the conduit is partially filled by the fluid and thus

the flow is partially bounded by solid surfaces, as in an irrigation ditch, and

flow is driven by gravity alone.

We start this chapter with a general physical description of internal flow

and the velocity boundary layer. We continue with a discussion of the

dimensionless Reynolds number and its physical significance. We then dis-

cuss the characteristics of flow inside pipes and introduce the pressure drop

correlations associated with it for both laminar and turbulent flows. Then

we present the minor losses and determine the pressure drop and pumping

power requirements for real-world piping systems. Finally, we present an

overview of flow measurement devices.
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CHAPTER

8
OBJECTIVES

When you finish reading this chapter, you

should be able to

n Have a deeper understanding of

laminar and turbulent flow in

pipes and the analysis of fully

developed flow

n Calculate the major and minor

losses associated with pipe 

flow in piping networks and

determine the pumping power

requirements

n Understand the different velocity

and flow rate measurement

techniques and learn their

advantages and disadvantages
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8–1 n INTRODUCTION

Liquid or gas flow through pipes or ducts is commonly used in heating and
cooling applications and fluid distribution networks. The fluid in such appli-
cations is usually forced to flow by a fan or pump through a flow section.
We pay particular attention to friction, which is directly related to the pres-

sure drop and head loss during flow through pipes and ducts. The pressure
drop is then used to determine the pumping power requirement. A typical
piping system involves pipes of different diameters connected to each other
by various fittings or elbows to route the fluid, valves to control the flow
rate, and pumps to pressurize the fluid.

The terms pipe, duct, and conduit are usually used interchangeably for
flow sections. In general, flow sections of circular cross section are referred
to as pipes (especially when the fluid is a liquid), and flow sections of non-
circular cross section as ducts (especially when the fluid is a gas). Small-
diameter pipes are usually referred to as tubes. Given this uncertainty, we
will use more descriptive phrases (such as a circular pipe or a rectangular

duct) whenever necessary to avoid any misunderstandings.
You have probably noticed that most fluids, especially liquids, are trans-

ported in circular pipes. This is because pipes with a circular cross section
can withstand large pressure differences between the inside and the outside
without undergoing significant distortion. Noncircular pipes are usually
used in applications such as the heating and cooling systems of buildings
where the pressure difference is relatively small, the manufacturing and
installation costs are lower, and the available space is limited for ductwork
(Fig. 8–1).

Although the theory of fluid flow is reasonably well understood, theoreti-
cal solutions are obtained only for a few simple cases such as fully devel-
oped laminar flow in a circular pipe. Therefore, we must rely on experimen-
tal results and empirical relations for most fluid flow problems rather than
closed-form analytical solutions. Noting that the experimental results are
obtained under carefully controlled laboratory conditions and that no two
systems are exactly alike, we must not be so naive as to view the results
obtained as “exact.” An error of 10 percent (or more) in friction factors cal-
culated using the relations in this chapter is the “norm” rather than the
“exception.”

The fluid velocity in a pipe changes from zero at the surface because of
the no-slip condition to a maximum at the pipe center. In fluid flow, it is
convenient to work with an average velocity Vavg, which remains constant in
incompressible flow when the cross-sectional area of the pipe is constant
(Fig. 8–2). The average velocity in heating and cooling applications may
change somewhat because of changes in density with temperature. But, in
practice, we evaluate the fluid properties at some average temperature and
treat them as constants. The convenience of working with constant proper-
ties usually more than justifies the slight loss in accuracy.

Also, the friction between the fluid particles in a pipe does cause a slight
rise in fluid temperature as a result of the mechanical energy being con-
verted to sensible thermal energy. But this temperature rise due to frictional

heating is usually too small to warrant any consideration in calculations and
thus is disregarded. For example, in the absence of any heat transfer, no
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FIGURE 8–1

Circular pipes can withstand large
pressure differences between the
inside and the outside without
undergoing any significant distortion,
but noncircular pipes cannot.

Vavg

FIGURE 8–2

Average velocity Vavg is defined as the
average speed through a cross section.
For fully developed laminar pipe flow,
Vavg is half of maximum velocity.
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noticeable difference can be detected between the inlet and outlet tempera-
tures of water flowing in a pipe. The primary consequence of friction in
fluid flow is pressure drop, and thus any significant temperature change in
the fluid is due to heat transfer.

The value of the average velocity Vavg at some streamwise cross-section is
determined from the requirement that the conservation of mass principle be
satisfied (Fig. 8–2). That is,

(8–1)

where m
.

is the mass flow rate, r is the density, Ac is the cross-sectional area,
and u(r) is the velocity profile. Then the average velocity for incompressible
flow in a circular pipe of radius R can be expressed as

(8–2)

Therefore, when we know the flow rate or the velocity profile, the average
velocity can be determined easily.

8–2 n LAMINAR AND TURBULENT FLOWS

If you have been around smokers, you probably noticed that the cigarette
smoke rises in a smooth plume for the first few centimeters and then starts
fluctuating randomly in all directions as it continues its rise. Other plumes
behave similarly (Fig. 8–3). Likewise, a careful inspection of flow in a pipe
reveals that the fluid flow is streamlined at low velocities but turns chaotic
as the velocity is increased above a critical value, as shown in Fig. 8–4. The
flow regime in the first case is said to be laminar, characterized by smooth

streamlines and highly ordered motion, and turbulent in the second case,
where it is characterized by velocity fluctuations and highly disordered

motion. The transition from laminar to turbulent flow does not occur sud-
denly; rather, it occurs over some region in which the flow fluctuates
between laminar and turbulent flows before it becomes fully turbulent. Most
flows encountered in practice are turbulent. Laminar flow is encountered
when highly viscous fluids such as oils flow in small pipes or narrow 
passages.

We can verify the existence of these laminar, transitional, and turbulent
flow regimes by injecting some dye streaks into the flow in a glass pipe, as
the British engineer Osborne Reynolds (1842–1912) did over a century ago.
We observe that the dye streak forms a straight and smooth line at low
velocities when the flow is laminar (we may see some blurring because of
molecular diffusion), has bursts of fluctuations in the transitional regime, and
zigzags rapidly and randomly when the flow becomes fully turbulent. These
zigzags and the dispersion of the dye are indicative of the fluctuations in the
main flow and the rapid mixing of fluid particles from adjacent layers.

The intense mixing of the fluid in turbulent flow as a result of rapid fluctu-
ations enhances momentum transfer between fluid particles, which increases
the friction force on the surface and thus the required pumping power. The
friction factor reaches a maximum when the flow becomes fully turbulent.
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FIGURE 8–3

Laminar and turbulent flow regimes 
of candle smoke.

(a) Laminar flow

Dye trace

Dye injection

(b) Turbulent flow
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FIGURE 8–4

The behavior of colored fluid injected
into the flow in laminar and turbulent

flows in a pipe.
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Reynolds Number
The transition from laminar to turbulent flow depends on the geometry, sur-

face roughness, flow velocity, surface temperature, and type of fluid, among
other things. After exhaustive experiments in the 1880s, Osborne Reynolds
discovered that the flow regime depends mainly on the ratio of inertial

forces to viscous forces in the fluid. This ratio is called the Reynolds num-
ber and is expressed for internal flow in a circular pipe as (Fig. 8–5)

(8–3)

where Vavg 5 average flow velocity (m/s), D 5 characteristic length of the
geometry (diameter in this case, in m), and n 5 m/r 5 kinematic viscosity
of the fluid (m2/s). Note that the Reynolds number is a dimensionless quan-
tity (Chap. 7). Also, kinematic viscosity has the unit m2/s, and can be
viewed as viscous diffusivity or diffusivity for momentum.

At large Reynolds numbers, the inertial forces, which are proportional to
the fluid density and the square of the fluid velocity, are large relative to the
viscous forces, and thus the viscous forces cannot prevent the random and
rapid fluctuations of the fluid. At small or moderate Reynolds numbers,
however, the viscous forces are large enough to suppress these fluctuations
and to keep the fluid “in line.” Thus the flow is turbulent in the first case
and laminar in the second.

The Reynolds number at which the flow becomes turbulent is called the
critical Reynolds number, Recr. The value of the critical Reynolds number
is different for different geometries and flow conditions. For internal flow in
a circular pipe, the generally accepted value of the critical Reynolds number
is Recr 5 2300.

For flow through noncircular pipes, the Reynolds number is based on the
hydraulic diameter Dh defined as (Fig. 8–6)

Hydraulic diameter: (8–4)

where Ac is the cross-sectional area of the pipe and p is its wetted perimeter.
The hydraulic diameter is defined such that it reduces to ordinary diameter
D for circular pipes,

Circular pipes:

It certainly is desirable to have precise values of Reynolds numbers for
laminar, transitional, and turbulent flows, but this is not the case in practice.
It turns out that the transition from laminar to turbulent flow also depends
on the degree of disturbance of the flow by surface roughness, pipe vibra-

tions, and fluctuations in the flow. Under most practical conditions, the flow
in a circular pipe is laminar for Re & 2300, turbulent for Re * 4000, and
transitional in between. That is,

Re * 4000  turbulent flow

2300 & Re & 4000  transitional flow

Re & 2300  laminar flow
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FIGURE 8–5

The Reynolds number can be viewed
as the ratio of inertial forces to viscous
forces acting on a fluid element.
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The hydraulic diameter Dh 5 4Ac /p is
defined such that it reduces to ordinary
diameter for circular tubes.
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In transitional flow, the flow switches between laminar and turbulent ran-
domly (Fig. 8–7). It should be kept in mind that laminar flow can be main-
tained at much higher Reynolds numbers in very smooth pipes by avoiding
flow disturbances and pipe vibrations. In such carefully controlled experi-
ments, laminar flow has been maintained at Reynolds numbers of up to
100,000.

8–3 n THE ENTRANCE REGION

Consider a fluid entering a circular pipe at a uniform velocity. Because of
the no-slip condition, the fluid particles in the layer in contact with the sur-
face of the pipe come to a complete stop. This layer also causes the fluid
particles in the adjacent layers to slow down gradually as a result of friction.
To make up for this velocity reduction, the velocity of the fluid at the mid-
section of the pipe has to increase to keep the mass flow rate through the
pipe constant. As a result, a velocity gradient develops along the pipe.

The region of the flow in which the effects of the viscous shearing forces
caused by fluid viscosity are felt is called the velocity boundary layer or
just the boundary layer. The hypothetical boundary surface divides the
flow in a pipe into two regions: the boundary layer region, in which the
viscous effects and the velocity changes are significant, and the irrotational
(core) flow region, in which the frictional effects are negligible and the
velocity remains essentially constant in the radial direction.

The thickness of this boundary layer increases in the flow direction until
the boundary layer reaches the pipe center and thus fills the entire pipe, as
shown in Fig. 8–8. The region from the pipe inlet to the point at which the
boundary layer merges at the centerline is called the hydrodynamic
entrance region, and the length of this region is called the hydrodynamic
entry length Lh. Flow in the entrance region is called hydrodynamically

developing flow since this is the region where the velocity profile develops.
The region beyond the entrance region in which the velocity profile is fully
developed and remains unchanged is called the hydrodynamically fully
developed region. The flow is said to be fully developed when the normal-
ized temperature profile remains unchanged as well. Hydrodynamically
developed flow is equivalent to fully developed flow when the fluid in the
pipe is not heated or cooled since the fluid temperature in this case remains
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FIGURE 8–7

In the transitional flow region 
of 2300 # Re # 4000, the flow 

switches between laminar and
turbulent randomly.
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FIGURE 8–8

The development of the velocity
boundary layer in a pipe. (The

developed average velocity profile is
parabolic in laminar flow, as shown,

but somewhat flatter or fuller in
turbulent flow.)
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essentially constant throughout. The velocity profile in the fully developed
region is parabolic in laminar flow and somewhat flatter (or fuller) in turbu-
lent flow due to eddy motion and more vigorous mixing in the radial direc-
tion. The time-averaged velocity profile remains unchanged when the flow
is fully developed, and thus

Hydrodynamically fully developed: (8–5)

The shear stress at the pipe wall tw is related to the slope of the velocity
profile at the surface. Noting that the velocity profile remains unchanged in
the hydrodynamically fully developed region, the wall shear stress also
remains constant in that region (Fig. 8–9).

Consider fluid flow in the hydrodynamic entrance region of a pipe. The
wall shear stress is the highest at the pipe inlet where the thickness of the
boundary layer is smallest, and decreases gradually to the fully developed
value, as shown in Fig. 8–10. Therefore, the pressure drop is higher in the
entrance regions of a pipe, and the effect of the entrance region is always to
increase the average friction factor for the entire pipe. This increase may be
significant for short pipes but is negligible for long ones.

Entry Lengths
The hydrodynamic entry length is usually taken to be the distance from the
pipe entrance to where the wall shear stress (and thus the friction factor)
reaches within about 2 percent of the fully developed value. In laminar flow,

the hydrodynamic entry length is given approximately as [see Kays and
Crawford (1993) and Shah and Bhatti (1987)]

(8–6)Lh, laminar > 0.05ReD

­u(r, x)

­x
5 0  →   u 5 u(r)
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FIGURE 8–9

In the fully developed flow region of 
a pipe, the velocity profile does not
change downstream, and thus the wall
shear stress remains constant as well.
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FIGURE 8–10

The variation of wall shear stress in
the flow direction for flow in a pipe
from the entrance region into the fully
developed region.
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For Re 5 20, the hydrodynamic entry length is about the size of the diame-
ter, but increases linearly with velocity. In the limiting laminar case of Re
5 2300, the hydrodynamic entry length is 115D.

In turbulent flow, the intense mixing during random fluctuations usually
overshadows the effects of molecular diffusion. The hydrodynamic entry
length for turbulent flow can be approximated as [see Bhatti and Shah
(1987) and Zhi-qing (1982)]

(8–7)

The entry length is much shorter in turbulent flow, as expected, and its depen-
dence on the Reynolds number is weaker. In many pipe flows of practical
engineering interest, the entrance effects become insignificant beyond a pipe
length of 10 diameters, and the hydrodynamic entry length is approximated as

(8–8)

Precise correlations for calculating the frictional head losses in entrance
regions are available in the literature. However, the pipes used in practice
are usually several times the length of the entrance region, and thus the flow
through the pipes is often assumed to be fully developed for the entire
length of the pipe. This simplistic approach gives reasonable results for
long pipes but sometimes poor results for short ones since it underpredicts
the wall shear stress and thus the friction factor.

8–4 n LAMINAR FLOW IN PIPES

We mentioned in Section 8–2 that flow in pipes is laminar for Re & 2300,
and that the flow is fully developed if the pipe is sufficiently long (relative
to the entry length) so that the entrance effects are negligible. In this section
we consider the steady laminar flow of an incompressible fluid with con-
stant properties in the fully developed region of a straight circular pipe. We
obtain the momentum equation by applying a momentum balance to a dif-
ferential volume element, and obtain the velocity profile by solving it. Then
we use it to obtain a relation for the friction factor. An important aspect of
the analysis here is that it is one of the few available for viscous flow.

In fully developed laminar flow, each fluid particle moves at a constant
axial velocity along a streamline and the velocity profile u(r) remains
unchanged in the flow direction. There is no motion in the radial direction,
and thus the velocity component in the direction normal to flow is every-
where zero. There is no acceleration since the flow is steady and fully
developed.

Now consider a ring-shaped differential volume element of radius r, thick-
ness dr, and length dx oriented coaxially with the pipe, as shown in Fig.
8–11. The volume element involves only pressure and viscous effects and
thus the pressure and shear forces must balance each other. The pressure
force acting on a submerged plane surface is the product of the pressure at
the centroid of the surface and the surface area. A force balance on the 
volume element in the flow direction gives

(8–9)(2pr dr P)x 2 (2pr dr P)x1dx 1 (2pr dx t)r 2 (2pr dx t)r1dr 5 0

Lh, turbulent < 10D

Lh, turbulent 5 1.359DRe1/4
D
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FIGURE 8–11

Free-body diagram of a ring-shaped
differential fluid element of radius r,
thickness dr, and length dx oriented

coaxially with a horizontal pipe in
fully developed laminar flow.
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which indicates that in fully developed flow in a horizontal pipe, the 
viscous and pressure forces balance each other. Dividing by 2pdrdx and
rearranging,

(8–10)

Taking the limit as dr, dx → 0 gives

(8–11)

Substituting t 5 2m(du/dr) and taking m 5 constant gives the desired
equation,

(8–12)

The quantity du/dr is negative in pipe flow, and the negative sign is included
to obtain positive values for t. (Or, du/dr 5 2du/dy since y 5 R 2 r.) The
left side of Eq. 8–12 is a function of r, and the right side is a function of x.
The equality must hold for any value of r and x, and an equality of the form
f(r) 5 g(x) can be satisfied only if both f (r) and g(x) are equal to the same
constant. Thus we conclude that dP/dx 5 constant. This can be verified by
writing a force balance on a volume element of radius R and thickness dx

(a slice of the pipe), which gives (Fig. 8–12)

(8–13)

Here tw is constant since the viscosity and the velocity profile are constants
in the fully developed region. Therefore, dP/dx 5 constant.

Equation 8–12 can be solved by rearranging and integrating it twice to give

(8–14)

The velocity profile u(r) is obtained by applying the boundary conditions
­u/­r 5 0 at r 5 0 (because of symmetry about the centerline) and u 5 0 at
r 5 R (the no-slip condition at the pipe surface). We get

(8–15)

Therefore, the velocity profile in fully developed laminar flow in a pipe is
parabolic with a maximum at the centerline and minimum (zero) at the pipe
wall. Also, the axial velocity u is positive for any r, and thus the axial pres-
sure gradient dP/dx must be negative (i.e., pressure must decrease in the
flow direction because of viscous effects).

The average velocity is determined from its definition by substituting Eq.
8–15 into Eq. 8–2, and performing the integration. It gives

(8–16)

Combining the last two equations, the velocity profile is rewritten as
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FIGURE 8–12

Free-body diagram of a fluid disk
element of radius R and length dx in
fully developed laminar flow in a
horizontal pipe.
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This is a convenient form for the velocity profile since Vavg can be deter-
mined easily from the flow rate information.

The maximum velocity occurs at the centerline and is determined from
Eq. 8–17 by substituting r 5 0,

(8–18)

Therefore, the average velocity in fully developed laminar pipe flow is one-

half of the maximum velocity.

Pressure Drop and Head Loss
A quantity of interest in the analysis of pipe flow is the pressure drop DP

since it is directly related to the power requirements of the fan or pump to
maintain flow. We note that dP/dx 5 constant, and integrating from x 5 x1

where the pressure is P1 to x 5 x1 1 L where the pressure is P2 gives

(8–19)

Substituting Eq. 8–19 into the Vavg expression in Eq. 8–16, the pressure
drop can be expressed as

Laminar flow: (8–20)

The symbol D is typically used to indicate the difference between the final
and initial values, like Dy 5 y2 2 y1. But in fluid flow, DP is used to desig-
nate pressure drop, and thus it is P1 2 P2. A pressure drop due to viscous
effects represents an irreversible pressure loss, and it is called pressure loss
DPL to emphasize that it is a loss (just like the head loss hL, which is pro-
portional to it).

Note from Eq. 8–20 that the pressure drop is proportional to the viscosity
m of the fluid, and DP would be zero if there were no friction. Therefore,
the drop of pressure from P1 to P2 in this case is due entirely to viscous
effects, and Eq. 8–20 represents the pressure loss DPL when a fluid of vis-
cosity m flows through a pipe of constant diameter D and length L at aver-
age velocity Vavg.

In practice, it is found convenient to express the pressure loss for all types
of fully developed internal flows (laminar or turbulent flows, circular or
noncircular pipes, smooth or rough surfaces, horizontal or inclined pipes) as
(Fig. 8–13)

Pressure loss: (8–21)

where rV 2
avg/2 is the dynamic pressure and f is the Darcy friction factor,

(8–22)

It is also called the Darcy–Weisbach friction factor, named after the
Frenchman Henry Darcy (1803–1858) and the German Julius Weisbach
(1806–1871), the two engineers who provided the greatest contribution in
its development. It should not be confused with the friction coefficient Cf
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The relation for pressure loss (and
head loss) is one of the most general
relations in fluid mechanics, and it is
valid for laminar or turbulent flows,

circular or noncircular pipes, and
pipes with smooth or rough surfaces.
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[also called the Fanning friction factor, named after the American engineer
John Fanning (1837–1911)], which is defined as Cf 5 2tw /(rV 2

avg) 5 f /4.
Setting Eqs. 8–20 and 8–21 equal to each other and solving for f gives the

friction factor for fully developed laminar flow in a circular pipe,

Circular pipe, laminar: (8–23)

This equation shows that in laminar flow, the friction factor is a function of

the Reynolds number only and is independent of the roughness of the pipe

surface.
In the analysis of piping systems, pressure losses are commonly expressed

in terms of the equivalent fluid column height, called the head loss hL. Not-
ing from fluid statics that DP 5 rgh and thus a pressure difference of DP

corresponds to a fluid height of h 5 DP/rg, the pipe head loss is obtained
by dividing DPL by rg to give

Head loss: (8–24)

The head loss hL represents the additional height that the fluid needs to be

raised by a pump in order to overcome the frictional losses in the pipe. The
head loss is caused by viscosity, and it is directly related to the wall shear
stress. Equations 8–21 and 8–24 are valid for both laminar and turbulent
flows in both circular and noncircular pipes, but Eq. 8–23 is valid only for
fully developed laminar flow in circular pipes.

Once the pressure loss (or head loss) is known, the required pumping
power to overcome the pressure loss is determined from

(8–25)

where V
.

is the volume flow rate and m
.

is the mass flow rate.
The average velocity for laminar flow in a horizontal pipe is, from Eq. 8–20,

Horizontal pipe: (8–26)

Then the volume flow rate for laminar flow through a horizontal pipe of
diameter D and length L becomes

(8–27)

This equation is known as Poiseuille’s law, and this flow is called Hagen–

Poiseuille flow in honor of the works of G. Hagen (1797–1884) and J.
Poiseuille (1799–1869) on the subject. Note from Eq. 8–27 that for a speci-

fied flow rate, the pressure drop and thus the required pumping power is pro-

portional to the length of the pipe and the viscosity of the fluid, but it is

inversely proportional to the fourth power of the radius (or diameter) of the

pipe. Therefore, the pumping power requirement for a piping system can be
reduced by a factor of 16 by doubling the pipe diameter (Fig. 8–14). Of
course the benefits of the reduction in the energy costs must be weighed
against the increased cost of construction due to using a larger-diameter pipe.

The pressure drop DP equals the pressure loss DPL in the case of a hor-
izontal pipe, but this is not the case for inclined pipes or pipes with vari-
able cross-sectional area. This can be demonstrated by writing the energy

V
#

5 Vavg Ac 5
(P1 2 P2)R

2

8mL
 pR2

5
(P1 2 P2)pD4

128mL
5

DP pD4

128mL

Vavg 5
(P1 2 P2)R

2

8mL
5

(P1 2 P2)D
2

32mL
5

DP D2

32mL

W
#

pump, L 5 V
#

 DPL 5 V
#

rghL 5 m
#

ghL

hL 5
DPL

rg
5 f 

L

D
  
V 2

avg

2g

f 5
64m

rDVavg

5
64

Re
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2D

Wpump = 16 hp
⋅

Wpump = 1 hp

/4

⋅

D Vavg

Vavg

FIGURE 8–14

The pumping power requirement for 
a laminar flow piping system can be
reduced by a factor of 16 by doubling
the pipe diameter.
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equation for steady, incompressible one-dimensional flow in terms of heads
as (see Chap. 5)

(8–28)

where hpump, u is the useful pump head delivered to the fluid, hturbine, e is the
turbine head extracted from the fluid, hL is the irreversible head loss
between sections 1 and 2, V1 and V2 are the average velocities at sections
1 and 2, respectively, and a1 and a2 are the kinetic energy correction factors

at sections 1 and 2 (it can be shown that a 5 2 for fully developed laminar
flow and about 1.05 for fully developed turbulent flow). Equation 8–28 can
be rearranged as

(8–29)

Therefore, the pressure drop DP 5 P1 2 P2 and pressure loss DPL 5 rghL

for a given flow section are equivalent if (1) the flow section is horizontal
so that there are no hydrostatic or gravity effects (z1 5 z2), (2) the flow sec-
tion does not involve any work devices such as a pump or a turbine since
they change the fluid pressure (hpump, u 5 hturbine, e 5 0), (3) the cross-sectional
area of the flow section is constant and thus the average flow velocity is
constant (V1 5 V2), and (4) the velocity profiles at sections 1 and 2 are the
same shape (a1 5 a2).

Inclined Pipes
Relations for inclined pipes can be obtained in a similar manner from a force
balance in the direction of flow. The only additional force in this case is the
component of the fluid weight in the flow direction, whose magnitude is

(8–30)

where u is the angle between the horizontal and the flow direction (Fig.
8–15). The force balance in Eq. 8–9 now becomes

(8–31)

which results in the differential equation

(8–32)

Following the same solution procedure, the velocity profile can be shown to be

(8–33)

It can also be shown that the average velocity and the volume flow rate rela-
tions for laminar flow through inclined pipes are, respectively,

(8–34)

which are identical to the corresponding relations for horizontal pipes, except
that DP is replaced by DP 2 rgL sin u. Therefore, the results already
obtained for horizontal pipes can also be used for inclined pipes provided
that DP is replaced by DP 2 rgL sin u (Fig. 8–16). Note that u . 0 and thus
sin u . 0 for uphill flow, and u , 0 and thus sin u , 0 for downhill flow.

Vavg 5
(DP 2 rgL sin u)D2

32mL
  and  V

#

5
(DP 2 rgL sin u)pD4

128mL

u(r) 5 2
R2

4m
 adP

dx
1 rg sin ub a1 2

r 2

R2
b

m

r
  
d

dr
 ar 

du

dr
b 5

dP

dx
1 rg sin u

 2 (2pr dx t)r1dr 2 rg(2pr dr dx) sin u 5 0 

 (2pr dr P)x2(2pr dr P)x1dx 1 (2pr dx t)r 

Wx 5 W sin u 5 rgVelement sin u 5 rg(2pr dr dx) sin u

P1 2 P2 5 r(a2V
2
2 2 a1V

2
1)/2 1 rg[(z2 2 z1) 1 hturbine, e 2 hpump, u 1 hL]

P1

rg
1 a1 

V 2
1

2g
1 z1 1 hpump, u 5

P2

rg
1 a2 

V 2
2

2g
1 z2 1 hturbine, e 1 hL
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u

r1drt

rt

Px1dxW sin

W

Px

x

r

u

u

dx

dr

FIGURE 8–15

Free-body diagram of a ring-shaped
differential fluid element of radius r,
thickness dr, and length dx oriented

coaxially with an inclined pipe in fully
developed laminar flow.

     Uphill flow: u > 0 and sin u > 0

Downhill flow: u < 0 and sin u < 0

Horizontal pipe: V = 
⋅ ∆P pD4

128  Lm

⋅
Inclined pipe: V = 

(∆P – rgL sin u)pD4

128mL

FIGURE 8–16

The relations developed for fully
developed laminar flow through

horizontal pipes can also be used 
for inclined pipes by replacing 

DP with DP 2 rgL sin u.
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In inclined pipes, the combined effect of pressure difference and gravity
drives the flow. Gravity helps downhill flow but opposes uphill flow. There-
fore, much greater pressure differences need to be applied to maintain a
specified flow rate in uphill flow although this becomes important only for
liquids, because the density of gases is generally low. In the special case of
no flow (V

.
5 0), we have DP 5 rgL sin u, which is what we would obtain

from fluid statics (Chap. 3).

Laminar Flow in Noncircular Pipes
The friction factor f relations are given in Table 8–1 for fully developed lam-

inar flow in pipes of various cross sections. The Reynolds number for flow
in these pipes is based on the hydraulic diameter Dh 5 4Ac /p, where Ac is
the cross-sectional area of the pipe and p is its wetted perimeter.
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TABLE 8–1

Friction factor for fully developed laminar flow in pipes of various cross

sections (Dh 5 4Ac /p and Re 5 Vavg Dh /n)

a/b Friction Factor

Tube Geometry or u° f

Circle — 64.00/Re

Rectangle a/b

1 56.92/Re

2 62.20/Re

3 68.36/Re

4 72.92/Re

6 78.80/Re

8 82.32/Re

` 96.00/Re

Ellipse a/b

1 64.00/Re

2 67.28/Re

4 72.96/Re

8 76.60/Re

16 78.16/Re

Isosceles triangle u

10° 50.80/Re

30° 52.28/Re

60° 53.32/Re

90° 52.60/Re

120° 50.96/Re

D

b

a

b

a

u
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EXAMPLE 8–1 Flow Rates in Horizontal and Inclined Pipes

Oil at 20°C (r 5 888 kg/m3 and m 5 0.800 kg/m · s) is flowing steadily

through a 5-cm-diameter 40-m-long pipe (Fig. 8–17). The pressure at the

pipe inlet and outlet are measured to be 745 and 97 kPa, respectively.

Determine the flow rate of oil through the pipe assuming the pipe is (a) hor-

izontal, (b) inclined 15° upward, (c) inclined 15° downward. Also verify that

the flow through the pipe is laminar.

SOLUTION The pressure readings at the inlet and outlet of a pipe are given.

The flow rates are to be determined for three different orientations, and the

flow is to be shown to be laminar.

Assumptions 1 The flow is steady and incompressible. 2 The entrance

effects are negligible, and thus the flow is fully developed. 3 The pipe

involves no components such as bends, valves, and connectors. 4 The piping

section involves no work devices such as a pump or a turbine.

Properties The density and dynamic viscosity of oil are given to be r

5 888 kg/m3 and m 5 0.800 kg/m · s, respectively.

Analysis The pressure drop across the pipe and the pipe cross-sectional

area are

(a) The flow rate for all three cases can be determined from Eq. 8–34,

where u is the angle the pipe makes with the horizontal. For the horizontal

case, u 5 0 and thus sin u 5 0. Therefore,

 5 0.00311 m3/s 

 V
#

horiz 5
DP pD4

128mL
5

(648 kPa)p (0.05 m)4

128(0.800 kg/m ? s)(40 m)
 a1000 N/m2

1 kPa
b a1 kg ? m/s2

1 N
b  

V
#

5
(DP 2 rgL sin u)pD4

128mL

 Ac 5 pD2/4 5 p(0.05 m)2/4 5 0.001963 m2

 DP 5 P1 2 P2 5 745 2 97 5 648 kPa
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(b) For uphill flow with an inclination of 15°, we have u 5 115°, and

(c) For downhill flow with an inclination of 15°, we have u 5 215°, and

 5 0.00354 m3/s 

 5 
[648,000 Pa 2 (888 kg/m3)(9.81 m/s2)(40 m) sin (2158)]p(0.05 m)4

128(0.800 kg/m ? s)(40 m)
a1 kg ? m/s2

1 Pa ? m2
b

V
#

downhill 5
(DP 2 rgL sin u)pD4

128mL
 

 5 0.00267 m3/s 

 5
[648,000 Pa 2 (888 kg/m3)(9.81 m/s2)(40 m) sin 15°]p(0.05 m)4

128(0.800 kg/m ? s)(40 m)
a1 kg ? m/s2

1 Pa ? m2
b

 V
#

uphill 5
(DP 2 rgL sin u)pD4

128mL
 

+15˚

–15˚

Horizontal

FIGURE 8–17

Schematic for Example 8–1.
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The flow rate is the highest for the downhill flow case, as expected. The

average fluid velocity and the Reynolds number in this case are

which is much less than 2300. Therefore, the flow is laminar for all three

cases and the analysis is valid.

Discussion Note that the flow is driven by the combined effect of pressure

difference and gravity. As can be seen from the flow rates we calculated,

gravity opposes uphill flow, but enhances downhill flow. Gravity has no effect

on the flow rate in the horizontal case. Downhill flow can occur even in the

absence of an applied pressure difference. For the case of P1 5 P2 5 97 kPa

(i.e., no applied pressure difference), the pressure throughout the entire pipe

would remain constant at 97 Pa, and the fluid would flow through the pipe at

a rate of 0.00043 m3/s under the influence of gravity. The flow rate increases

as the tilt angle of the pipe from the horizontal is increased in the negative

direction and would reach its maximum value when the pipe is vertical.

EXAMPLE 8–2 Pressure Drop and Head Loss in a Pipe

Water at 40°F (r 5 62.42 lbm/ft3 and m 5 1.038 3 1023 lbm/ft · s) is

flowing through a 0.12-in- (5 0.010 ft) diameter 30-ft-long horizontal pipe

steadily at an average velocity of 3.0 ft/s (Fig. 8–18). Determine (a) the head

loss, (b) the pressure drop, and (c) the pumping power requirement to over-

come this pressure drop.

SOLUTION The average flow velocity in a pipe is given. The head loss, the

pressure drop, and the pumping power are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The entrance

effects are negligible, and thus the flow is fully developed. 3 The pipe

involves no components such as bends, valves, and connectors.

Properties The density and dynamic viscosity of water are given to be r 5

62.42 lbm/ft3 and m 5 1.038 3 1023 lbm/ft · s, respectively.

Analysis (a) First we need to determine the flow regime. The Reynolds num-

ber is

which is less than 2300. Therefore, the flow is laminar. Then the friction

factor and the head loss become

(b) Noting that the pipe is horizontal and its diameter is constant, the pres-

sure drop in the pipe is due entirely to the frictional losses and is equivalent

to the pressure loss,

 hL 5 f 
L

D
  

V 2
avg

2g
5 0.0355 

30 ft

0.01 ft
 

(3 ft/s)2

2(32.2 ft/s2)
5 14.9 ft

 f 5
64

Re
5

64

1803
5 0.0355

Re 5
rVavgD

m
5

(62.42 lbm/ft3)(3 ft/s)(0.01 ft)

1.038 3 1023 lbm/ft ? s
 5 1803

 Re 5
rVavgD

m
5

(888 kg/m3)(1.80 m/s)(0.05 m)

0.800 kg/m ? s
5 100

 Vavg 5
V
#

Ac

 5
0.00354 m3/s

0.001963 m2
5 1.80 m/s 
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3.0 ft/s

30 ft

0.12 in

FIGURE 8–18

Schematic for Example 8–2.
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(c) The volume flow rate and the pumping power requirements are

Therefore, power input in the amount of 0.30 W is needed to overcome the

frictional losses in the flow due to viscosity.

Discussion The pressure rise provided by a pump is often listed by a pump

manufacturer in units of head (Chap. 14). Thus, the pump in this flow needs to

provide 14.9 ft of water head in order to overcome the irreversible head loss. 

8–5 n TURBULENT FLOW IN PIPES

Most flows encountered in engineering practice are turbulent, and thus it is
important to understand how turbulence affects wall shear stress. However,
turbulent flow is a complex mechanism dominated by fluctuations, and
despite tremendous amounts of work done in this area by researchers, the
theory of turbulent flow remains largely undeveloped. Therefore, we must
rely on experiments and the empirical or semi-empirical correlations devel-
oped for various situations.

Turbulent flow is characterized by random and rapid fluctuations of
swirling regions of fluid, called eddies, throughout the flow. These fluctua-
tions provide an additional mechanism for momentum and energy transfer.
In laminar flow, fluid particles flow in an orderly manner along pathlines,
and momentum and energy are transferred across streamlines by molecular
diffusion. In turbulent flow, the swirling eddies transport mass, momentum,
and energy to other regions of flow much more rapidly than molecular dif-
fusion, greatly enhancing mass, momentum, and heat transfer. As a result,
turbulent flow is associated with much higher values of friction, heat trans-
fer, and mass transfer coefficients (Fig. 8–19).

Even when the average flow is steady, the eddy motion in turbulent flow
causes significant fluctuations in the values of velocity, temperature, pres-
sure, and even density (in compressible flow). Figure 8–20 shows the varia-
tion of the instantaneous velocity component u with time at a specified loca-
tion, as can be measured with a hot-wire anemometer probe or other
sensitive device. We observe that the instantaneous values of the velocity
fluctuate about an average value, which suggests that the velocity can be
expressed as the sum of an average value u– and a fluctuating component u9,

(8–35)

This is also the case for other properties such as the velocity component v
in the y-direction, and thus v 5 v

–
1 v9, P 5 P

–
1 P9, and T 5 T

–
1 T9. The

average value of a property at some location is determined by averaging it
over a time interval that is sufficiently large so that the time average levels
off to a constant. Therefore, the time average of fluctuating components is

u 5 u 1 u9

 W
#

pump 5 V
#

 DP 5 (0.000236 ft3/s)(929 lbf/ft2) a 1 W

0.737 lbf ? ft/s
b 5 0.30 W

 V
#

5 Vavg Ac 5 Vavg(pD2/4) 5 (3 ft/s)[p(0.01 ft)2/4] 5 0.000236 ft3/s

 5 929 lbf/ft2
5 6.45 psi

 DP 5 DPL 5 f 
L

D
  
rV2

avg

2
5 0.0355 

30 ft

0.01 ft
 

(62.42 lbm/ft3)(3 ft/s)2

2
 a 1 lbf

32.2 lbm ? ft/s2
b
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(a) Before

      turbulence

2 2 2 2 2

55

7

12

7

12

7

12

7

12

7

12

5 5 5

(b) After

      turbulence

12 2 5 7 5

122

7

2

7

5

12

2

12

7

5

12

5 7 2

FIGURE 8–19

The intense mixing in turbulent flow
brings fluid particles at different

momentums into close contact and
thus enhances momentum transfer.

u

u9
u–

Time, t

FIGURE 8–20

Fluctuations of the velocity
component u with time at a specified

location in turbulent flow.
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zero, e.g., . The magnitude of u9 is usually just a few percent of u–, but
the high frequencies of eddies (in the order of a thousand per second) makes
them very effective for the transport of momentum, thermal energy, and mass.
In time-averaged stationary turbulent flow, the average values of properties
(indicated by an overbar) are independent of time. The chaotic fluctuations of
fluid particles play a dominant role in pressure drop, and these random
motions must be considered in analyses together with the average velocity.

Perhaps the first thought that comes to mind is to determine the shear
stress in an analogous manner to laminar flow from t 5 2m du–/dr, where
u–(r) is the average velocity profile for turbulent flow. But the experimental
studies show that this is not the case, and the shear stress is much larger due
to the turbulent fluctuations. Therefore, it is convenient to think of the tur-
bulent shear stress as consisting of two parts: the laminar component, which
accounts for the friction between layers in the flow direction (expressed as
tlam 5 2m du–/dr), and the turbulent component, which accounts for the
friction between the fluctuating fluid particles and the fluid body (denoted
as tturb and is related to the fluctuation components of velocity). Then the
total shear stress in turbulent flow can be expressed as

(8–36)

The typical average velocity profile and relative magnitudes of laminar and
turbulent components of shear stress for turbulent flow in a pipe are given in
Fig. 8–21. Note that although the velocity profile is approximately parabolic
in laminar flow, it becomes flatter or “fuller” in turbulent flow, with a sharp
drop near the pipe wall. The fullness increases with the Reynolds number,
and the velocity profile becomes more nearly uniform, lending support to the
commonly utilized uniform velocity profile approximation for fully devel-
oped turbulent pipe flow. Keep in mind, however, that the flow speed at the
wall of a stationary pipe is always zero (no-slip condition).

Turbulent Shear Stress
Consider turbulent flow in a horizontal pipe, and the upward eddy motion of
fluid particles in a layer of lower velocity to an adjacent layer of higher
velocity through a differential area dA as a result of the velocity fluctuation
v9, as shown in Fig. 8–22. The mass flow rate of the fluid particles rising
through dA is rv9dA, and its net effect on the layer above dA is a reduction in
its average flow velocity because of momentum transfer to the fluid particles
with lower average flow velocity. This momentum transfer causes the hori-
zontal velocity of the fluid particles to increase by u9, and thus its momen-
tum in the horizontal direction to increase at a rate of (rv9dA)u9, which must
be equal to the decrease in the momentum of the upper fluid layer. Noting
that force in a given direction is equal to the rate of change of momentum
in that direction, the horizontal force acting on a fluid element above dA

due to the passing of fluid particles through dA is dF 5 (rv9dA)(2u9)
5 2ru9v9dA. Therefore, the shear force per unit area due to the eddy motion
of fluid particles dF/dA 5 2ru9v9 can be viewed as the instantaneous turbu-
lent shear stress. Then the turbulent shear stress can be expressed as

(8–37)

where is the time average of the product of the fluctuating velocity
components u9 and v9. Note that even though and v9 5 0u9 5 0u9v9 Þ 0

u9v9

tturb 5 2ru9v9

ttotal 5 tlam 1 tturb

u9 5 0
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tturbtlam

u(r)

r

0

r

0

0

ttotal

t

FIGURE 8–21

The velocity profile and the variation
of shear stress with radial distance for
turbulent flow in a pipe.

v9

rv9 dA u(y)

u

u9

dA

y

FIGURE 8–22

Fluid particle moving upward through
a differential area dA as a result of the
velocity fluctuation v9.

cen72367_ch08.qxd  11/4/04  7:13 PM  Page 336



(and thus ), and experimental results show that is usually a
negative quantity. Terms such as or are called Reynolds
stresses or turbulent stresses.

Many semi-empirical formulations have been developed that model the
Reynolds stress in terms of average velocity gradients in order to provide
mathematical closure to the equations of motion. Such models are called
turbulence models and are discussed in more detail in Chap. 15.

The random eddy motion of groups of particles resembles the random
motion of molecules in a gas—colliding with each other after traveling a
certain distance and exchanging momentum in the process. Therefore,
momentum transport by eddies in turbulent flows is analogous to the molec-
ular momentum diffusion. In many of the simpler turbulence models, turbu-
lent shear stress is expressed in an analogous manner as suggested by the
French mathematician Joseph Boussinesq (1842–1929) in 1877 as

(8–38)

where mt is the eddy viscosity or turbulent viscosity, which accounts for
momentum transport by turbulent eddies. Then the total shear stress can be
expressed conveniently as

(8–39)

where nt 5 mt /r is the kinematic eddy viscosity or kinematic turbulent
viscosity (also called the eddy diffusivity of momentum). The concept of eddy
viscosity is very appealing, but it is of no practical use unless its value can be
determined. In other words, eddy viscosity must be modeled as a function of
the average flow variables; we call this eddy viscosity closure. For example,
in the early 1900s, the German engineer L. Prandtl introduced the concept of
mixing length lm, which is related to the average size of the eddies that are
primarily responsible for mixing, and expressed the turbulent shear stress as

(8–40)

But this concept is also of limited use since lm is not a constant for a given
flow (in the vicinity of the wall, for example, lm is nearly proportional to the
distance from the wall) and its determination is not easy. Final mathematical
closure is obtained only when lm is written as a function of average flow
variables, distance from the wall, etc.

Eddy motion and thus eddy diffusivities are much larger than their molec-
ular counterparts in the core region of a turbulent boundary layer. The eddy
motion loses its intensity close to the wall and diminishes at the wall
because of the no-slip condition (u9 and v9 are identically zero at a station-
ary wall). Therefore, the velocity profile is very slowly changing in the core
region of a turbulent boundary layer, but very steep in the thin layer adja-
cent to the wall, resulting in large velocity gradients at the wall surface. So
it is no surprise that the wall shear stress is much larger in turbulent flow
than it is in laminar flow (Fig. 8–23).

Note that molecular diffusivity of momentum n (as well as m) is a fluid
property, and its value is listed in fluid handbooks. Eddy diffusivity nt (as
well as mt), however, is not a fluid property, and its value depends on flow

tturb 5 mt 
­u

­y
5 rl 2

ma­u

­y
b 2

ttotal 5 (m1 mt) 
­u

­y
5 r(n1 nt) 

­u

­y

tturb 5 2ru9v9 5 mt 
­u

­y

2ru922ru9v9

u9v9u9 v9 5 0
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y=0

Turbulent flow

y

­u

­y

y=0

Laminar flow

y

­u

­y
a b

a b

FIGURE 8–23

The velocity gradients at the wall, and
thus the wall shear stress, are much

larger for turbulent flow than they are
for laminar flow, even though the

turbulent boundary layer is thicker
than the laminar one for the same

value of free-stream velocity.
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conditions. Eddy diffusivity nt decreases toward the wall, becoming zero at
the wall. Its value ranges from zero at the wall to several thousand times the
value of the molecular diffusivity in the core region.

Turbulent Velocity Profile
Unlike laminar flow, the expressions for the velocity profile in a turbulent
flow are based on both analysis and measurements, and thus they are 
semi-empirical in nature with constants determined from experimental data.
Consider fully developed turbulent flow in a pipe, and let u denote the time-
averaged velocity in the axial direction (and thus drop the overbar from u–

for simplicity).
Typical velocity profiles for fully developed laminar and turbulent flows

are given in Fig. 8–24. Note that the velocity profile is parabolic in laminar
flow but is much fuller in turbulent flow, with a sharp drop near the pipe
wall. Turbulent flow along a wall can be considered to consist of four
regions, characterized by the distance from the wall. The very thin layer
next to the wall where viscous effects are dominant is the viscous (or lami-
nar or linear or wall) sublayer. The velocity profile in this layer is very
nearly linear, and the flow is streamlined. Next to the viscous sublayer is
the buffer layer, in which turbulent effects are becoming significant, but the
flow is still dominated by viscous effects. Above the buffer layer is the
overlap (or transition) layer, also called the inertial sublayer, in which the
turbulent effects are much more significant, but still not dominant. Above
that is the outer (or turbulent) layer in the remaining part of the flow in
which turbulent effects dominate over molecular diffusion (viscous) effects.

Flow characteristics are quite different in different regions, and thus it is
difficult to come up with an analytic relation for the velocity profile for the
entire flow as we did for laminar flow. The best approach in the turbulent
case turns out to be to identify the key variables and functional forms using
dimensional analysis, and then to use experimental data to determine the
numerical values of any constants.

The thickness of the viscous sublayer is very small (typically, much less
than 1 percent of the pipe diameter), but this thin layer next to the wall plays
a dominant role on flow characteristics because of the large velocity gradi-
ents it involves. The wall dampens any eddy motion, and thus the flow in this
layer is essentially laminar and the shear stress consists of laminar shear
stress which is proportional to the fluid viscosity. Considering that velocity
changes from zero to nearly the core region value across a layer that is some-
times no thicker than a hair (almost like a step function), we would expect
the velocity profile in this layer to be very nearly linear, and experiments
confirm that. Then the velocity gradient in the viscous sublayer remains
nearly constant at du/dy 5 u/y, and the wall shear stress can be expressed as

(8–41)

where y is the distance from the wall (note that y 5 R 2 r for a circular pipe).
The quantity tw /r is frequently encountered in the analysis of turbulent
velocity profiles. The square root of tw /r has the dimensions of velocity, and
thus it is convenient to view it as a fictitious velocity called the friction veloc-
ity expressed as . Substituting this into Eq. 8–41, the velocity
profile in the viscous sublayer can be expressed in dimensionless form as

u* 5 1tw /r

tw 5 m 
u

y
5 rn 

u

y
  or  

tw

r
5
nu

y
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Laminar flow

u(r)
r

0

Turbulent flow

Turbulent layer

Overlap layer

Buffer layer

Viscous sublayer

u(r)r

0

Vavg

Vavg

FIGURE 8–24

The velocity profile in fully developed
pipe flow is parabolic in laminar flow,
but much fuller in turbulent flow.
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Viscous sublayer: (8–42)

This equation is known as the law of the wall, and it is found to satisfacto-
rily correlate with experimental data for smooth surfaces for 0 # yu*/n # 5.
Therefore, the thickness of the viscous sublayer is roughly

Thickness of viscous sublayer: (8–43)

where ud is the flow velocity at the edge of the viscous sublayer, which is
closely related to the average velocity in a pipe. Thus we conclude that the

thickness of the viscous sublayer is proportional to the kinematic viscosity

and inversely proportional to the average flow velocity. In other words, the
viscous sublayer is suppressed and it gets thinner as the velocity (and thus
the Reynolds number) increases. Consequently, the velocity profile becomes
nearly flat and thus the velocity distribution becomes more uniform at very
high Reynolds numbers.

The quantity n/u* has dimensions of length and is called the viscous
length; it is used to nondimensionalize the distance y from the surface. In
boundary layer analysis, it is convenient to work with nondimensionalized
distance and nondimensionalized velocity defined as

Nondimensionalized variables: (8–44)

Then the law of the wall (Eq. 8–42) becomes simply

Normalized law of the wall: (8–45)

Note that the friction velocity u* is used to nondimensionalize both y and u,
and y1 resembles the Reynolds number expression.

In the overlap layer, the experimental data for velocity are observed to
line up on a straight line when plotted against the logarithm of distance
from the wall. Dimensional analysis indicates and the experiments confirm
that the velocity in the overlap layer is proportional to the logarithm of dis-
tance, and the velocity profile can be expressed as

The logarithmic law: (8–46)

where k and B are constants whose values are determined experimentally to
be about 0.40 and 5.0, respectively. Equation 8–46 is known as the loga-
rithmic law. Substituting the values of the constants, the velocity profile is
determined to be

Overlap layer: (8–47)

It turns out that the logarithmic law in Eq. 8–47 satisfactorily represents exper-
imental data for the entire flow region except for the regions very close to the
wall and near the pipe center, as shown in Fig. 8–25, and thus it is viewed as a
universal velocity profile for turbulent flow in pipes or over surfaces. Note
from the figure that the logarithmic-law velocity profile is quite accurate for y1

. 30, but neither velocity profile is accurate in the buffer layer, i.e., the region
5 , y1 , 30. Also, the viscous sublayer appears much larger in the figure than
it is since we used a logarithmic scale for distance from the wall.
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layer

Turbulent
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Eq. 8–47

Eq. 8–42

Experimental data

FIGURE 8–25

Comparison of the law of the wall and
the logarithmic-law velocity profiles

with experimental data for fully
developed turbulent flow in a pipe.
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A good approximation for the outer turbulent layer of pipe flow can be
obtained by evaluating the constant B in Eq. 8–46 from the requirement that
maximum velocity in a pipe occurs at the centerline where r 5 0. Solving
for B from Eq. 8–46 by setting y 5 R 2 r 5 R and u 5 umax, and substitut-
ing it back into Eq. 8–46 together with k 5 0.4 gives

Outer turbulent layer: (8–48)

The deviation of velocity from the centerline value umax 2 u is called the
velocity defect, and Eq. 8–48 is called the velocity defect law. This relation
shows that the normalized velocity profile in the core region of turbulent
flow in a pipe depends on the distance from the centerline and is independent
of the viscosity of the fluid. This is not surprising since the eddy motion is
dominant in this region, and the effect of fluid viscosity is negligible.

Numerous other empirical velocity profiles exist for turbulent pipe flow.
Among those, the simplest and the best known is the power-law velocity
profile expressed as

Power-law velocity profile: (8–49)

where the exponent n is a constant whose value depends on the Reynolds
number. The value of n increases with increasing Reynolds number. The
value n 5 7 generally approximates many flows in practice, giving rise to
the term one-seventh power-law velocity profile.

Various power-law velocity profiles are shown in Fig. 8–26 for n 5 6, 8,
and 10 together with the velocity profile for fully developed laminar flow
for comparison. Note that the turbulent velocity profile is fuller than the
laminar one, and it becomes more flat as n (and thus the Reynolds number)
increases. Also note that the power-law profile cannot be used to calculate
wall shear stress since it gives a velocity gradient of infinity there, and it
fails to give zero slope at the centerline. But these regions of discrepancy
constitute a small portion of flow, and the power-law profile gives highly
accurate results for turbulent flow through a pipe.

Despite the small thickness of the viscous sublayer (usually much less
than 1 percent of the pipe diameter), the characteristics of the flow in this
layer are very important since they set the stage for flow in the rest of the
pipe. Any irregularity or roughness on the surface disturbs this layer and
affects the flow. Therefore, unlike laminar flow, the friction factor in turbu-
lent flow is a strong function of surface roughness.

It should be kept in mind that roughness is a relative concept, and it has
significance when its height e is comparable to the thickness of the laminar
sublayer (which is a function of the Reynolds number). All materials appear
“rough” under a microscope with sufficient magnification. In fluid mechan-
ics, a surface is characterized as being rough when the hills of roughness
protrude out of the laminar sublayer. A surface is said to be smooth when
the sublayer submerges the roughness elements. Glass and plastic surfaces
are generally considered to be hydrodynamically smooth.

The Moody Chart
The friction factor in fully developed turbulent pipe flow depends on the
Reynolds number and the relative roughness e/D, which is the ratio of the
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FIGURE 8–26

Power-law velocity profiles for 
fully developed turbulent flow in 
a pipe for different exponents, and 
its comparison with the laminar
velocity profile.
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mean height of roughness of the pipe to the pipe diameter. The functional
form of this dependence cannot be obtained from a theoretical analysis, and all
available results are obtained from painstaking experiments using artificially
roughened surfaces (usually by gluing sand grains of a known size on the inner
surfaces of the pipes). Most such experiments were conducted by Prandtl’s stu-
dent J. Nikuradse in 1933, followed by the works of others. The friction factor
was calculated from the measurements of the flow rate and the pressure drop.

The experimental results obtained are presented in tabular, graphical, and
functional forms obtained by curve-fitting experimental data. In 1939, Cyril
F. Colebrook (1910–1997) combined the available data for transition and
turbulent flow in smooth as well as rough pipes into the following implicit
relation known as the Colebrook equation:

(8–50)

We note that the logarithm in Eq. 8–50 is a base 10 rather than a natural
logarithm. In 1942, the American engineer Hunter Rouse (1906–1996) veri-
fied Colebrook’s equation and produced a graphical plot of f as a function
of Re and the product . He also presented the laminar flow relation
and a table of commercial pipe roughness. Two years later, Lewis F. Moody
(1880–1953) redrew Rouse’s diagram into the form commonly used today.
The now famous Moody chart is given in the appendix as Fig. A–12. It
presents the Darcy friction factor for pipe flow as a function of the
Reynolds number and e/D over a wide range. It is probably one of the most
widely accepted and used charts in engineering. Although it is developed for
circular pipes, it can also be used for noncircular pipes by replacing the
diameter by the hydraulic diameter.

Commercially available pipes differ from those used in the experiments in
that the roughness of pipes in the market is not uniform and it is difficult to
give a precise description of it. Equivalent roughness values for some com-
mercial pipes are given in Table 8–2 as well as on the Moody chart. But it
should be kept in mind that these values are for new pipes, and the relative
roughness of pipes may increase with use as a result of corrosion, scale
buildup, and precipitation. As a result, the friction factor may increase by a
factor of 5 to 10. Actual operating conditions must be considered in the
design of piping systems. Also, the Moody chart and its equivalent Cole-
brook equation involve several uncertainties (the roughness size, experimen-
tal error, curve fitting of data, etc.), and thus the results obtained should not
be treated as “exact.” It is usually considered to be accurate to 615 percent
over the entire range in the figure.

The Colebrook equation is implicit in f, and thus the determination of the
friction factor requires some iteration unless an equation solver such as EES
is used. An approximate explicit relation for f was given by S. E. Haaland in
1983 as

(8–51)

The results obtained from this relation are within 2 percent of those
obtained from the Colebrook equation. If more accurate results are desired,
Eq. 8–51 can be used as a good first guess in a Newton iteration when using
a programmable calculator or a spreadsheet to solve for f with Eq. 8–50.

1
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TABLE 8–2

Equivalent roughness values for new

commercial pipes*

Roughness, e

Material ft mm

Glass, plastic 0 (smooth)

Concrete 0.003–0.03 0.9–9

Wood stave 0.0016 0.5

Rubber,

smoothed 0.000033 0.01

Copper or

brass tubing 0.000005 0.0015

Cast iron 0.00085 0.26

Galvanized

iron 0.0005 0.15

Wrought iron 0.00015 0.046

Stainless steel 0.000007 0.002

Commercial

steel 0.00015 0.045

* The uncertainty in these values can be as much
as 660 percent.
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We make the following observations from the Moody chart:

• For laminar flow, the friction factor decreases with increasing Reynolds
number, and it is independent of surface roughness.

• The friction factor is a minimum for a smooth pipe (but still not zero
because of the no-slip condition) and increases with roughness (Fig.
8–27). The Colebrook equation in this case (e 5 0) reduces to the
Prandtl equation expressed as .

• The transition region from the laminar to turbulent regime (2300 , Re
, 4000) is indicated by the shaded area in the Moody chart (Figs. 8–28
and A–12). The flow in this region may be laminar or turbulent,
depending on flow disturbances, or it may alternate between laminar and
turbulent, and thus the friction factor may also alternate between the
values for laminar and turbulent flow. The data in this range are the least
reliable. At small relative roughnesses, the friction factor increases in the
transition region and approaches the value for smooth pipes.

• At very large Reynolds numbers (to the right of the dashed line on the
chart) the friction factor curves corresponding to specified relative
roughness curves are nearly horizontal, and thus the friction factors are
independent of the Reynolds number (Fig. 8–28). The flow in that region
is called fully rough turbulent flow or just fully rough flow because the
thickness of the viscous sublayer decreases with increasing Reynolds
number, and it becomes so thin that it is negligibly small compared to the
surface roughness height. The viscous effects in this case are produced 
in the main flow primarily by the protruding roughness elements, and 
the contribution of the laminar sublayer is negligible. The Colebrook
equation in the fully rough zone (Re → `) reduces to the von Kármán
equation expressed as which is explicit in
f. Some authors call this zone completely (or fully) turbulent flow, but this
is misleading since the flow to the left of the dashed blue line in Fig. 8–28
is also fully turbulent.

In calculations, we should make sure that we use the actual internal diame-
ter of the pipe, which may be different than the nominal diameter. For
example, the internal diameter of a steel pipe whose nominal diameter is
1 in is 1.049 in (Table 8–3).

1/1f 5  22.0 log[(e/D)/3.7],

1/1f 5  2.0 log(Re1f ) 2  0.8
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Relative Friction

Roughness, Factor,

«/D f

0.0* 0.0119

0.00001 0.0119

0.0001 0.0134

0.0005 0.0172

0.001 0.0199

0.005 0.0305

0.01 0.0380

0.05 0.0716

* Smooth surface. All values are for Re 5 106

and are calculated from the Colebrook equation.

FIGURE 8–27

The friction factor is minimum for a
smooth pipe and increases with
roughness.
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At very large Reynolds numbers, the
friction factor curves on the Moody
chart are nearly horizontal, and thus
the friction factors are independent 
of the Reynolds number.
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Types of Fluid Flow Problems
In the design and analysis of piping systems that involve the use of the
Moody chart (or the Colebrook equation), we usually encounter three types
of problems (the fluid and the roughness of the pipe are assumed to be spec-
ified in all cases) (Fig. 8–29):

1. Determining the pressure drop (or head loss) when the pipe length and
diameter are given for a specified flow rate (or velocity)

2. Determining the flow rate when the pipe length and diameter are given
for a specified pressure drop (or head loss)

3. Determining the pipe diameter when the pipe length and flow rate are
given for a specified pressure drop (or head loss)

Problems of the first type are straightforward and can be solved directly
by using the Moody chart. Problems of the second type and third type are
commonly encountered in engineering design (in the selection of pipe diam-
eter, for example, that minimizes the sum of the construction and pumping
costs), but the use of the Moody chart with such problems requires an itera-
tive approach unless an equation solver is used.

In problems of the second type, the diameter is given but the flow rate is
unknown. A good guess for the friction factor in that case is obtained from
the completely turbulent flow region for the given roughness. This is true
for large Reynolds numbers, which is often the case in practice. Once the
flow rate is obtained, the friction factor can be corrected using the Moody
chart or the Colebrook equation, and the process is repeated until the solu-
tion converges. (Typically only a few iterations are required for convergence
to three or four digits of precision.)

In problems of the third type, the diameter is not known and thus 
the Reynolds number and the relative roughness cannot be calculated.
Therefore, we start calculations by assuming a pipe diameter. The pressure
drop calculated for the assumed diameter is then compared to the specified
pressure drop, and calculations are repeated with another pipe diameter in
an iterative fashion until convergence.

To avoid tedious iterations in head loss, flow rate, and diameter calcula-
tions, Swamee and Jain proposed the following explicit relations in 1976
that are accurate to within 2 percent of the Moody chart:

(8–52)

(8–53)

(8–54)

Note that all quantities are dimensional and the units simplify to the
desired unit (for example, to m or ft in the last relation) when consistent
units are used. Noting that the Moody chart is accurate to within 15 percent
of experimental data, we should have no reservation in using these approx-
imate relations in the design of piping systems.
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TABLE 8–3

Standard sizes for Schedule 40

steel pipes

Nominal Actual Inside

Size, in Diameter, in

0.269

0.364

0.493

0.622

0.824

1 1.049

1.610

2 2.067

2.469

3 3.068

5 5.047

10 10.02

21
2

11
2

3
4

1
2

3
8

1
4

1
8

L, D, V

Problem
type

1

L, ∆P, V

L, D, ∆P

∆P (or hL)

D

V2

3

Given Find

⋅

⋅

⋅

FIGURE 8–29

The three types of problems
encountered in pipe flow.
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