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Reactive Transport 

Silver dichromate forming Leisegang rings in a test 
tube experiment 

http://www.insilico.hu/liesegang/index.html 
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Reactive Transport 
Conceptual 

A+BC 

A 

B 

A 
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Reactions require transport 
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Conceptual Model 

   A+BC 

Reaction Rate 

• Intrinsic rate  
• Transport-- combine reactants, remove products 

Processes 

• Advection 

• Dispersion 

• Diffusion 

Scale 
Time scale for reaction, tr 

Time scale for transport, tt 

 

Damkohler Numbers: tt/tr 

 DaI: tadvect/treact 

 DaII: tdisperse/treact 

 



Clemson Hydro 

Reaction Locations and Mixing 

Bulk Material 

 Fluid— Multi-scale mixing, dispersion, length scale 

 Solid– Diffusion dominant     

Interfaces 

 Fluid-Solid 

 Liquid-Gas 
    No flow at interfacediffusion  

    Mass transfer over stagnant layer 
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Important Scales 
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Coupled effects 
Reaction Transport 

 • Reaction changes K , porous media flow 

 karst, diagenesis 

• Reaction changes D, subsequent reaction rate 

 Biofouling, reactor performance 

• Heat affects reaction rate 

 Geothermal, remediation 

• Other chemicals, competing/synergistic reaction 

 Bioprocesses, waste water treatment 

• Precipitates affect density, flow 

 Flocculation, mixtures 

• Stress affects reaction, reduces K, flow 

 Diagenesis, sintering  

  

 http://onlinelibrary.wiley.com/doi/10.1002/hyp.9492/pdf 
http://www.seatrekbali.com/seasons-greetings-seatrek/ 

Cave in Bali 

Biofouling in pipe 

http://www.merusonline.com/biology 

Geyser in Yellowstone  

Styolites in limestone 
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Coupled effects 
Reaction changes K  

  

A+BC   

Precipitation-Dissolution-change porosity 

Couple through porosity, f 

 Kozeny-Carmen equation 

 Verma Pruess (1988) 

Permeable reactors 

Karst 
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Storage 
 
 
Advective Flux 
 
Diffusive Flux (Fick’s Law)       
 
Dispersive Flux                               
 
Source 
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Advection-Dispersion-Reaction 

c = C 
c C

t t

 


 

S=R  

 *( )h

C
D D C C R

t


         


q

 

2

homogeneous, flux divergence free

( )
C

D C C R
t

C
D C C R

t


       




    



q

q

* D CD=-

 hD ChD =-

 CqA =



Clemson Hydro 

Simulation of Advection-Dispersion-Reaction 

2

1

2

3

4

0

0

( )

C
D C C R

t

C N

J

J N

qC

qC N

J k C N


    





 

 

 

 

   

q

n

n

n

n

n

Governing 
 
 
Boundary 
Dirichlet,  Specify Conc 
Neuman, Specify diffusive flux 
Specify advective flux 
Cauchy, flux proportional to 
gradient 
 
Initial Conditions 
C(x,y,z,0) = Ci 

 

Parameters 
D:       hydrodynamic dispersion 
R:       reaction ratekinetics 
m, r:   fluid properties 
k:        permeability 
 

q, P        Flow, pressure 
T             Temperature 
           Stress 
Ci            other conc 
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Idealized Conceptual Models 

Case 1.  1-D flow, Steady 

 Steady state, C changes with x, not t 

 Plug flow reactor 

 Along streamtube/flowpath 

 Reactive wall 

Case 2.  Thoroughly mixed, transient 

 Transient, C changes with t, not x 

 Tank reactor, CSTR 

 Pore, Pond, Lake, Atmosphere 
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Permeable 
reactive barrier 

Permeable material that sorbs or breaks down 
contaminants on contact. 
• Metallic iron reduce chlorinated solvents 
• Limestone, phosphate precipitate  metals 
• Activated carbon, zeolites sorb 

contaminants 
• Compost, mulch, sawdustbiodegradation  
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1.  Reaction during 1-D, steady flow 
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Case 1. Reaction during 1-D flow 

   

Time scale for reaction    
 
Time scale for advection (travel time):   
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Idealized Conceptual Models 

Characteristic length scale:   
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More general case 
other reactions, non-uniform v 

0
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   take integral along flowpath
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Distance along flowpath 

First-order Decay Chain  

Temporal changes map out to spatial zones 
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Non-ideal factors 

Preferred flowpaths 

 Incomplete contact of reactants, affect k1 

Non-ideal interface,  

 Water, precipitates, longer diffusion time 

Storage along tube without reaction 

 Matrix diffusion 

Reactions alter flow 

 Precipitation, dissolution, biofilm 

Result: 

 q, k1, D change with time/space 
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Case 2.  Reaction in mixed region 
CSTR, Lake, Ocean, pore 
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No reaction, k1=0, conservative tracer 
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Residence Time Distribution 
Pulse tracer test 
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Residence Time Distribution 
Step tracer test 

( )
( )   Cumulative RTD
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Residence Time Distribution 

( ) ( )          Cumulative RTD

( )
( )  =             RTD
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Diagnostics 
Plug Flow Column 

E 

Ideal 

Bypass Low K zones 

How to use moments to diagnose? 
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Diagnostics 
Pulse input into CSTR 

E 

Bypass 

Dead zone 
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Residence time and Reaction 

• Residence time = time molecule in reactor 

• First-order rxn only depends on residence time 

• Other rxn also depend on mixing 

• Macro-mixingflow paths 

• Micro-mixingmechanical dispersion, diffusion 
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