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Heat Transport 

Temperature of a wolf pup 
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Schlieren image of natural convection.  
Note laminar-turbulent transition 

Goblet filled with coffee and ice water 
Thermal plume,  Lake Michigan 

http://www.geog.ucsb.edu/~jeff/115a/remote_sensing/thermal/thermalirinfo.html 

Radiating steel bar Temperature distribution  

Solar radiation 

Multiphase flow 
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Concepts 

• Storage 

• Source 

• Flux 
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Heat Storage 

Internal 
Energy 
[E/M]; 
[J/kg] 

Temperature 

solid                                                              liquid                                                 vapo r 

Latent heat 
of fusion 

Latent heat of 
vaporization 

Sensible heat 
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Heat Storage as Sensible Heat 

 

 

cp=specific heat capacity = Energy/(Mass Temp) 

 

Change of sensible heat 

 

On a per volume basis 

       Cpr=Energy/(Vol Temp) 
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Specific Heat Capacity 

   kJ/(kg K) 
Water:       4.18 
Ice:  2.11 
Air:            1.00 
CO2:  0.84 
 
Gold:         0.13  
Hydrogen:   14 (max) 
 
Span factor of 100 
Water in upper 90% 
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Heat Storage as Latent Heat 

Melting water:             334      kJ/kg 
Heating, 0-100oC:        420      kJ/kg 
Vaporing water:   2260      kJ/kg 

Internal 
Energy 
(J/kg) 

Temperature 

solid                             liquid                              vapor 

Water 
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Heat Sources 

Friction:  fluids, solids, energy dissipation 

Chemical reaction:  Exo, Endothermic 

Radioactive:  Fission, fusion   

Biological:  Metabolism 

Dielectric:  Microwaves, oven 

Joule:  Electrical resistance, toaster 
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Types of heat transfer 

Conduction:  Static media, Diffusion 

 

Convection:   Fluid moving, advection 
Forced;                                                      Free or Natural    

 

 

Radiation:      Emit and adsorb EM, no media 

 

Thermal flux   2 2 2 2
;   
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Radiation 

T1                          T2 

4 4

1 2( )
hR

q T T= 

 = Stefan-Boltzman constant 
                              5.67x10-8 W/(m2 K4) 
 = emissivity (0-1); ~1: black; ~0: shiny 

 
 

 

Heat transfer flux by radiation 

“Black” body absorbs all incoming 
radiation and is a perfect emitter.   

4

1e T = Stefan’s Law http://www.thermoworks.com/emissivity_table.html 
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Thermal Conduction 
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Fourier’s Law, energy flux 
 
 
 
 
 
                           

                                           
                                            Thermal conductivity 
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Thermal conductivity 

http://web.mit.edu/lienhard/www/ahttv202.pdf 

                      W/(moC) 
Vacuum:          0.001  
Air:                    0.02 
Water:              0.6 
Ice:                    2 
Steel:              10 
Copper:        400       
Diamond:   1000 
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Convection 

Forced:  Fluid flow driven by processes other than thermal, pump etc.   
Free or Natural:   Fluid flow by thermally induced density differences 

Energy flux:    
3
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Convection 

Forced:  Fluid flow driven by processes other than thermal, pump etc.   
Free or Natural:   Fluid flow by thermally induced density differences 

Energy flux:    
3

2 3 2
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( ) ( )h
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Convective heat transfer —fluidsolid 
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Convective Heat Transfer Coefficient 

http://web.mit.edu/lienhard/www/ahttv202.pdf 
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https://docs.google.com/viewer?url=http%3A%2F%2Fwww.bakker.org%2Fdartmouth06%2Fengs150%2F13-heat.pdf 



Clemson Hydro 

Storage 
 
 
Advective Flux 
 
Diffusive Flux (Fick’s Law)       
 
Dispersive Flux                               
 
Source 
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Simulation of Heat Transport 

1

2

( )

                              Dirichlet, Specify 

0                            Neumann, Insulating, no flux

                         Specified flux

( )    

h

h

h ext

T
D T T S

t

T N T

q

q N

q h T T


        =



=

 =

 =

 = 

v

n

n

n

4 4

          Convective cooling

( )          Surface to external radiation

( )           Cauchy-type boundary.  Thin, insulating layer

exth

h
h ext

q T T

K
q T T

b

 = 

 = 

n

n



Clemson Hydro 
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cp   heat capacity 
r      density 
Kh    thermal conductivity 
q      fluid flux 
n           porosity 
Dhyd    hydraulic dispersion 
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Coupled effects 

• Chemical reaction rate 

• Phase change 

• Material properties 

• Thermal expansion 

• Solid-Fluid in porous media 

• Biological growth 
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Temperature and Chemical Rxn 

• Reaction Rate Constant Function 

• Arrhenius eq 

 

 
EA:    activation energy for reaction 

R:  gas constant 

T:   temperature 

A:  Max rate term 
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Internal 
Energy 
(J/m3) 

Temperature 

solid                             liquid                              vapor 

Including phase change 
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Fluid properties 

Cp(E/(kg3)) Temperature ( 

Viscosity 

Density 

Thermal 
Conductivity 
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Thermal expansion 

Volumetric 
 
 
Linear 
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Material Properties 

https://docs.google.com/viewer?url=http%3A%2F%2Fwww.bakker.org%2Fdartmouth06%2Fengs150%2F13-heat.pdf 
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Heat Transfer  

by Radiation and Convection 
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Conceptual Model 

Radiation and convection 

Radiation and convection 
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U-tube Heat Exchanger 

Installation of a U-tube in a 
borehole 
 
 
 
 
 
 
 
 
Two pipes from a U-tube 
heat exchanger in a borehole 

U-tube heat exchanger 

Array of U-tube heat exchangers  
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Free Convection 
Rayleigh-Bernard Convection Cells 
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Convection in the Earth and Atm 
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Experiment 
cooling at the top 

http://www.sciencedirect.com/science/article/pii/S0894177707001409 

Simulated lake  
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Rayleigh number 

3 2

p

:   thermal expansion

:   gravity

:  temperature difference

:    layer thickness

c :  heat capacity

:  fluid density

:   dynamic viscosity

:    thermal conductivity
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For a layer with a free top 
surface:  Racrit=1100  
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Coefficient of Thermal Expansion 
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Effect of varying temperature 
on mixing in surface water 


