Heat Transport

Temperature of a wolf pup

Goblet filled with coffee and ice water

Thermal plume, Lake Michigan

Solar radiation

Temperature distribution

Schlieren image of natural convection. Note laminar-turbulent transition

Concepts

- Storage
- Source
- Flux

Heat Storage

Temperature

Specific Heat Capacity

Table of specific heat capacities at 25 °C (298 K) unless otherwise noted

Notable minima and maxima are shown in maroon

Substance 🔶	Phase 🖨	(mass) specific heat capacity c _p or c _m J·g ⁻¹ ·K ⁻¹	Constant pressure molar heat capacity <i>≎</i> <i>C_{p,m}</i> J·mol ⁻¹ ·K ⁻¹	Constant volume molar heat capacity ¢ <i>C_{v,m}</i> J·mol ⁻¹ ·K ⁻¹	Volumetric heat capacity C _v J·cm ⁻³ ·K ⁻¹
Air (Sea level, dry, 0 °C (273.15 K))	gas	1.0035	29.07	20.7643	0.001297
Air (typical room conditions ^A)	gas	1.012	29.19	20.85	0.00121
Aluminium	solid	0.897	24.2		2.422
Ammonia	liquid	4.700	80.08		3.263
Animal tissue (incl. human) ^[21]	mixed	3.5			3.7*
Antimony	solid	0.207	25.2		1.386
Argon	gas	0.5203	20.7862	12.4717	
Arsenic	solid	0.328	24.6		1.878
Beryllium	solid	1.82	16.4		3.367
Bismuth ^[22]	solid	0.123	25.7		1.20
Cadmium	solid	0.231	26.02		
Carbon dioxide CO2 ^[17]	gas	0.839*	36.94	28.46	
Chromium	solid	0.449	23.35		
Copper	solid	0.385	24.47		3.45
l ungsten:	solia	U.134	Z4.ŏ		2.58
Uranium	solid	0.116	27.7		2.216
Water at 100 °C (steam)	gas	2.080	37.47	28.03	
Water at 25 °C	liquid	4.1813	75.327	74.53	4.1796
Water at 100 °C	liquid	4.1813	75.327	74.53	4.2160
Water at -10 °C (ice) ^[22]	solid	2.11	38.09		1.938
Zinc ^[22]	solid	0.387	25.2		2.76
Substance	Phase	С _р J/(g·K)	С _{р,т} J/(mol·K)	C _{v,m} J/(mol∙K)	Volumetric heat capacity J/(cm ^{3.} K)

	kJ/(kg K)
Water:	4.18
lce:	2.11
Air:	1.00
CO2:	0.84

Gold:	0.13
Hydrogen:	14 (max)

Span factor of 100 Water in upper 90%

Clemson Hydro

A Assuming an attitude of 194 metres above mean sea level (the world-wide median attitude of human habitation), an indoor temperature of :

(40.85% relative humidity), and 760 mm-Hg sea level-corrected barometric pressure (molar water vapor content = 1.16%).

Heat Storage as Latent Heat

Substance 🔺	Latent Heat Fusion \$ kJ/kg	Melting Point ✦ ℃	Latent Heat Vaporization ✦ kJ/kg	Boiling Point ♦ °C
Alcohol, ethyl	108	-114	855	78.3
Ammonia	339	-75	1369	-33.34
Carbon dioxide	184	-78	574	-57
Helium			21	-268.93
Hydrogen(2)	58	-259	455	-253
Lead ^[8]	23.0	327.5	871	1750
Nitrogen	25.7	-210	200	-196
Oxygen	13.9	-219	213	-183
R134a		-101	215.9	-26.6
Toluene	72.1	-93	351	110.6
Turpentine			293	
Water	334	0	2260	100

Melting water:	334	kJ/kg
Heating, 0-100°C:	420	kJ/kg
Vaporing water:	2260	kJ/kg

Clemson Hydro

Heat Sources

Heat generated internally

Friction: fluids, solids, energy dissipation
Chemical reaction: Exo, Endothermic
Radioactive: Fission, fusion
Biological: Metabolism
Dielectric: Microwaves, oven
Joule: Electrical resistance, toaster

Types of heat transfer

Conduction: Static media, Diffusion

Convection: Fluid moving, advection

Forced;

Free or Natural

Radiation: Emit and adsorb EM, no media

hermal flux
$$\frac{E}{L^2T} = \frac{Power}{L^2}; \quad \frac{J}{m^2s} = \frac{W}{m^2}$$

Radiation

Characterization	Wavelength, λ	
Cosmic rays	< 0.3 pm	
Gamma rays	0.3-100 pm	
X rays	0.01-30 nm	
Ultraviolet light	3-400 nm	1
Visible light	0.4-0.7 μm	Thermal Radiation
Near infrared radiation	0.7-30 μm	0.1-1000 μm
Far infrared radiation	30-1000 μm	J
Millimeter waves	1-10 mm	
Microwaves	10-300 mm	
Shortwave radio & TV	300 mm-100 m	
Longwave radio	100 m-30 km	

Table 1.2 Forms of the electromagnetic wave spectrum

Heat transfer flux by radiation

"Black" body absorbs all incoming radiation and is a perfect emitter.

 T_1 $e_{\lambda} = \sigma T_1^4$ Stefan's Law

 σ = Stefan-Boltzman constant 5.67x10⁻⁸ W/(m² K⁴) ε = emissivity (0-1); ~1: black; ~0: shiny

http://www.thermoworks.com/emissivity_table.html

Thermal Conduction

Fourier's Law, energy flux

$$K_{h} = \left[\frac{E}{TL\theta}\right] = \left[\frac{P}{L\theta}\right] = \frac{J}{ms^{o}C} = \frac{W}{m^{o}C}$$

Thermal conductivity

Convection

Energy flux:
$$\mathcal{A} = qTc_p \rho$$
 $\frac{L_f^3}{L_c^2 T} \frac{\theta}{\theta} \frac{E}{\theta M} \frac{M_f}{L_f^3}$

Forced: Fluid flow driven by processes other than thermal, pump etc.Free or Natural: Fluid flow by thermally induced density differences

Convection

Energy flux:
$$\mathcal{A} = qTc_p \rho$$
 $\frac{L_f^3}{L_c^2 T} \frac{\theta}{\theta} \frac{E}{\theta M} \frac{M_f}{L_f^3} = \frac{E}{L_c^2 T} - \frac{E}{\Phi}$

Forced: Fluid flow driven by processes other than thermal, pump etc.Free or Natural: Fluid flow by thermally induced density differences

Convective heat transfer -fluid $\leftarrow \rightarrow$ solid

Convective Heat Transfer Coefficient

Table 1.1 Some illustrative values of convective heat transfer coefficients

Situation	\overline{h} , W/m ² K
<i>Natural convection in gases</i> • 0.3 m vertical wall in air, $\Delta T = 30^{\circ}$ C	4.33
Natural convection in liquids • 40 mm O.D. horizontal pipe in water, $\Delta T = 30^{\circ}$ C • 0.25 mm diameter wire in methanol, $\Delta T = 50^{\circ}$ C	570 4,000
• Air at 30 m/s over a 1 m flat plate, $\Delta T = 70^{\circ}$ C	80
 Forced convection of liquids Water at 2 m/s over a 60 mm plate, ΔT = 15°C Aniline-alcohol mixture at 3 m/s in a 25 mm I.D. tube, ΔT = 80°C Liquid sodium at 5 m/s in a 13 mm I.D. tube at 370°C 	590 2,600 75,000
 Boiling water During film boiling at 1 atm In a tea kettle At a peak pool-boiling heat flux, 1 atm At a peak flow-boiling heat flux, 1 atm At approximate maximum convective-boiling heat flux, under optimal conditions 	300 4,000 40,000 100,000 106
 Condensation In a typical horizontal cold-water-tube steam condenser Same, but condensing benzene Dropwise condensation of water at 1 atm 	15,000 1,700 160,000

Heat transfer coefficient

- *h* is not a constant, but $h = h(\Delta T)$.
- Three types of convection.
- Natural convection. Fluid moves due to buoyancy.

 $h \propto \Delta T^x$ $\frac{1}{4} < x < \frac{1}{3}$

 Forced convection: flow is induced by external means.

$$h = const$$

 Boiling convection: body is hot enough to boil liquid.

$$h \propto \Delta T^2$$

Typical values of
$$h$$
:
 T_{hot}
 T_{cold}
 T_{cold}

$$\frac{T_{cold}}{\overbrace{\longrightarrow}^{\bullet} T_{hot}} = 80 - 75,000$$

18

Governing Equation Conservation of Heat Energy $\nabla \cdot \Gamma + \frac{\partial c}{\partial t} = \mathcal{S}$ $c = \frac{E}{L^3}$ $\Gamma = \mathcal{D} + \mathcal{A}$ $\frac{\partial c}{\partial t} = \frac{\partial c_{\rm p} \rho nT}{\partial t}$ $\frac{E}{M\theta}\frac{M}{L_{f}^{3}}\frac{L_{f}^{3}}{L_{f}^{3}}\frac{\theta}{dt}$ $c = c_p \rho nT$ Storage $\mathcal{A} = c_p \rho T q \qquad \left[\frac{E}{M\theta} \frac{M}{L_f^3} \frac{\theta}{L_f^2} \right] = \left[\frac{E}{L_f^2} \right]$ **Advective Flux** Diffusive Flux (Fick's Law) $\mathcal{D} = -K_{\mu} \nabla T$ $\nabla \cdot (-D\nabla T) + \nabla \cdot \mathbf{v}T + \frac{\partial T}{\partial t} = S$ **Dispersive Flux** $D = \frac{K_h + D_{hyd}}{c_p \rho n}$ $\mathcal{D}_{h} = -D_{h}\nabla T$ $S = \frac{S_h}{c_p \rho n}$ Source $S = S_h$ $\nabla \cdot \left(-\left(K_{h}+D_{h}\right)\nabla T\right)+\nabla \cdot \mathbf{q}c_{p}\rho T+\frac{\partial c_{p}\rho nT}{\partial t}=S_{h}$ Governing

Simulation of Heat Transport

$$\nabla \cdot (-D\nabla T) + \nabla \cdot \mathbf{v}T + \frac{\partial T}{\partial t} = S$$

- $T = N_1$ Dirichlet, Specify T
- $\mathbf{n} \cdot q_h = 0$ Neumann, Insulating, no flux $\mathbf{n} \cdot q_h = N_2$ Specified flux
- $\mathbf{n} \cdot q_h = h(T_{ext} T) \qquad \text{Convective cooling} \\ \mathbf{n} \cdot q_h = \varepsilon \sigma (T_{ext}^4 T^4) \qquad \text{Surface to external radiation}$

$$\mathbf{n} \cdot q_h = \frac{K_h}{b} (T_{ext} - T)$$

Cauchy-type boundary. Thin, insulating layer

Parameters

- $c_{\rm p}$ heat capacity
- ρ density
- *K*_h thermal conductivity
- *q* fluid flux
- n porosity
- D_{hyd} hydraulic dispersion

$$\nabla \cdot (-D\nabla T) + \nabla \cdot \mathbf{v}T + \frac{\partial T}{\partial t} = S$$

$$D_{thermal} = \frac{K_h}{c_p \rho n} = \text{thermal diffusivity} = \frac{E}{L_c T \theta} \frac{M_f \theta}{E} \frac{L_f^2}{M_f} \frac{L_c^2}{E_c^2}$$
$$D_{h,disp} = \frac{D_{hyd}}{c_p \rho n} = \text{thermal dispersion}$$
$$S = \frac{S_h}{c_p \rho n} = \left[\frac{E}{T L_c^3} \frac{M \theta}{E} \frac{L_f^3}{M_f^2} \frac{L_c^3}{L_f^3}\right] = \left[\frac{\theta}{T}\right]$$

Coupled effects

- Chemical reaction rate
- Phase change
- Material properties
- Thermal expansion
- Solid-Fluid in porous media
- Biological growth

Temperature and Chemical Rxn

- Reaction Rate Constant Function
- Arrhenius eq

$$k = Ae^{-\frac{E_A}{RT}}$$

- E_A : activation energy for reaction
- R: gas constant
- T: temperature
- A: Max rate term

Including phase change

Clemson Hydro

Thermal expansion

$$\alpha_V = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p$$
 Volumetric

$$\alpha_L = \frac{1}{L} \frac{dL}{dT} \qquad \text{Linear}$$

Material 🔶	Linear coefficient, α , at 20 °C (10 ⁻⁶ /°C) \blacklozenge	Volumetric coefficient, β, at 20 °C (10 ⁻⁶ /°C) ¢
Aluminium	23.1	69
Aluminium nitride	5.3	4.2
Benzocyclobutene	42	126
Brass	19	57
Carbon steel	10.8	32.4
Concrete	12	36

Solid Phase in Porous Media

Heat loss by fluid

Heat balance between fluid and solid

$$\frac{dE_{s,f}}{dt} = Q_{h,out} = q_h A = A\overline{h}(T_f - T_s)$$
$$\frac{dE_{s,f}}{V_c dt} = \frac{Q_{h,out}}{V_c} = q_h \frac{A}{V_c} = \frac{A}{V_c} \overline{h}(T_f - T_s)$$

$$\frac{dE_{s,f}}{dt} = -\frac{dE_{s,s}}{dt}$$
$$\frac{d}{dt}\frac{E_{s,f}}{V_c} = -\frac{d}{dt}\frac{E_{s,s}}{V_c}$$
$$E_{s,f} = c_{pf}\rho_f nT_f \qquad \left[\frac{E_{s,f}}{M_f\theta}\frac{M_f}{L_f^3}\frac{L_f^3}{L_c^3}\frac{\theta}{L_s^3}\right]$$
$$E_{s,s} = c_{ps}\rho_s(n-1)T_s \qquad \left[\frac{E_{s,s}}{M_s\theta}\frac{M_s}{L_s^3}\frac{L_s^3}{L_c^3}\frac{\theta}{L_s^3}\right]$$

Material Properties

Heat Transfer by Radiation and Convection

274 Meat refrigeration

Table 13.1 Mean thermal conductivities in chilling

	Mean thermal conductivity (Wm ⁻¹ °C ⁻¹)	Variation with type
Lean meat	0.49	+0.05
(also kidney and liver)		
Fats		+0.02
Natural	0.21	
Rendered	0.15	
Bone		+0.02
compact bone	0.56	
spongy bone	0.26	
marrow	0.22	

Source: Morley, 1972a.

competatules for been, year, family steaks and roasts				
Term (French)	Description	Temp ran	erature ge ^[1]	USDA recommended ^[2]
Extra-rare or Blue (bleu)	very red and cold	46–49 °C	115– 120 °F	
Rare (saignant)	cold red center; soft	52–55 °C	125– 130 °F	
Medium rare (à point)	warm red center; firmer	55–60 °C	130– 140 °F	145 °F
Medium (demi- anglais)	pink and firm	60–65 °C	140– 150 °F	160 °F
Medium well (cuit)	small amount of pink in the center	65–69 °C	150– 155 °F	
Well done (bien cuit)	gray-brown throughout; firm	71– 100 °C	160– 212 °F	170 °F
Over cooked (<i>trop</i> cuit)	blacken throughout; hard	> 100 °C	> 212 °F	300 °F

Conceptual Model

Radiogenic heat production (μ W/m³) of some rocks (from Fowler, *The Solid Earth*):

granite	2.5
average continental crust	1
tholeiitic basalt	0.08
average oceanic crust	0.5
peridotite	0.006
average undepleted mantle	0.02

Installation of a U-tube in a borehole

Two pipes from a U-tube heat exchanger in a borehole

U-tube heat exchanger

Array of U-tube heat exchangers

Free Convection

Rayleigh-Bernard Convection Cells

Convection in the Earth and Atm

Experiment

cooling at the top

Simulated lake

Rayleigh number

 $Ra = \frac{\alpha g \Delta T d^3 c_p \rho^2}{\mu K_1}$

- α : thermal expansion
- g: gravity
- ΔT : temperature difference
- d: layer thickness
- c_p : heat capacity
- ρ : fluid density
- μ : dynamic viscosity
- K_h : thermal conductivity

Onset of natural convection depends on Ra

For a layer with a free top surface: Ra_{crit}=1100

Coefficient of Thermal Expansion

$$\alpha_{L} = \frac{1}{L_{o}} \frac{\partial L}{\partial T}$$
$$\alpha_{v} = \frac{1}{V_{o}} \left(\frac{\partial V}{\partial T}\right)_{P}$$
$$\alpha_{v} = \frac{1}{\rho_{o}} \left(\frac{\partial \rho}{\partial T}\right)_{P}$$

Material 🔶	Linear coefficient, α , at 20 °C (10 ⁻⁶ /°C) \blacklozenge	Volumetric coefficient, β, at 20 °C (10 ⁻⁶ /°C)
Aluminium	23.1	69
Aluminium nitride	5.3	4.2
Benzocyclobutene	42	126
Brass	19	57
Carbon steel	10.8	32.4
Concrete	12	36
Copper	17	51
Diamond	1	3
Ethanol	250	750 ^[10]
Gallium(III) arsenide	5.8	17.4
Gasoline	317	950 ^[9]
~	a.c.	05.5
nianium	0.0	
Tungsten	4.5	13.5
Water	69	207 ^[13]
YbGaGe	≐ 0	≐0 ^[20]
Zerodur	≈0.02	

Effect of varying temperature on mixing in surface water

